SUMBA+ Webinar "Modelling transport-related CO₂ emissions"

Kay Gade; Project Manager Daniel Krajzewicz; Head of department (comm) DLR Institute of Transport Research Department Mobility and Urban Development

Knowledge for Tomorrow

Agenda

Modelling transport-related CO2 emissions – A short introduction Kay Gade; Project Manager; DLR Institute of Transport Research

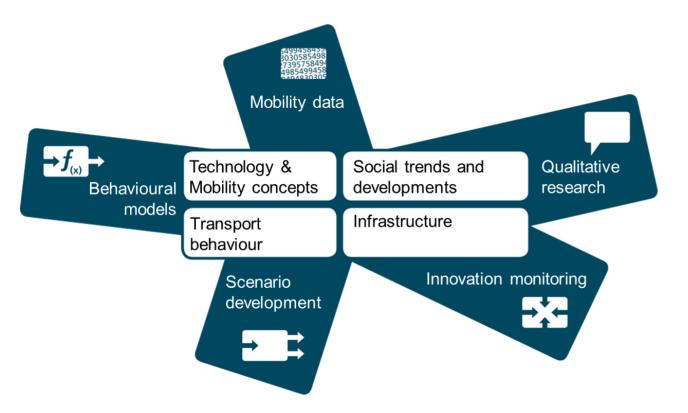
Modelling Vehicle Emissions

Daniel Krajzewicz; Head of department (comm.); DLR Institute of Transport Research

Q&A round & outlook

German Aerospace Center (DLR) Institute of Transport Research

6 Programme Topics Aeronautics and Space Transport and Energy Security and Digitalisation


Locations

- About 30 locations, about 55 institutes and facilities
- About 9,000 employees

Institute of Transport Research

- Analysis of Travel Behavior
- Measuring new mobility concepts
- Prediction of oncoming developments

Institute of Transport Research

Three departments

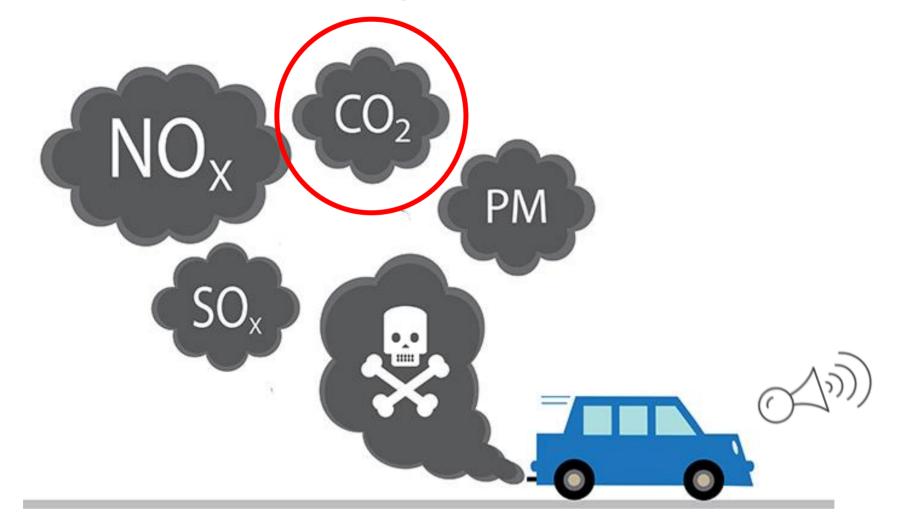
- Passenger Transport
- Commercial Transport
- Mobility and Urban Development

64 scientists from different disciplines

Transport related challenges

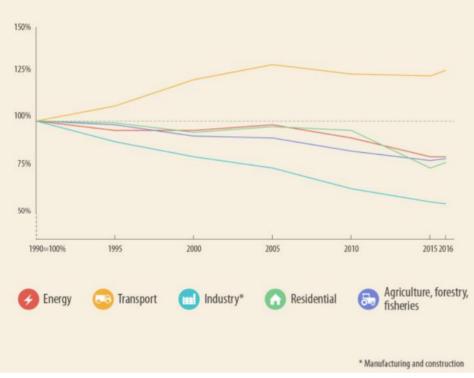
- Private car matters!
- **M** Ongoing suburbanization
- PT not able to cope with new developments and customer needs
- Infrastructure for other transport modes and the combination is rarely developed

Main aim: Development of tools that should help planners integrate intermodal solutions into urban mobility plans.

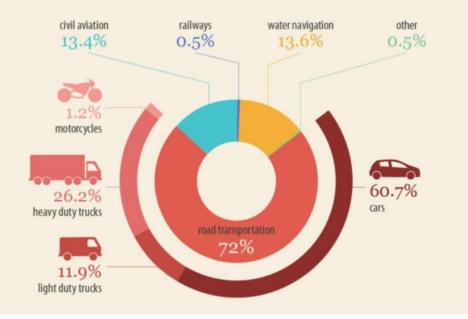

SUMBA +

- April 2021 December 2021
- Continuation and further development of activities related to the main stage project
 - M Driving implementation of commuting master plans in pilot regions forward
 - **Advancing modelling** to support the implementation of commuting master plans
 - **V** Cycling library cookbook
 - Further development Intermodalyzer

Transport-related Emission

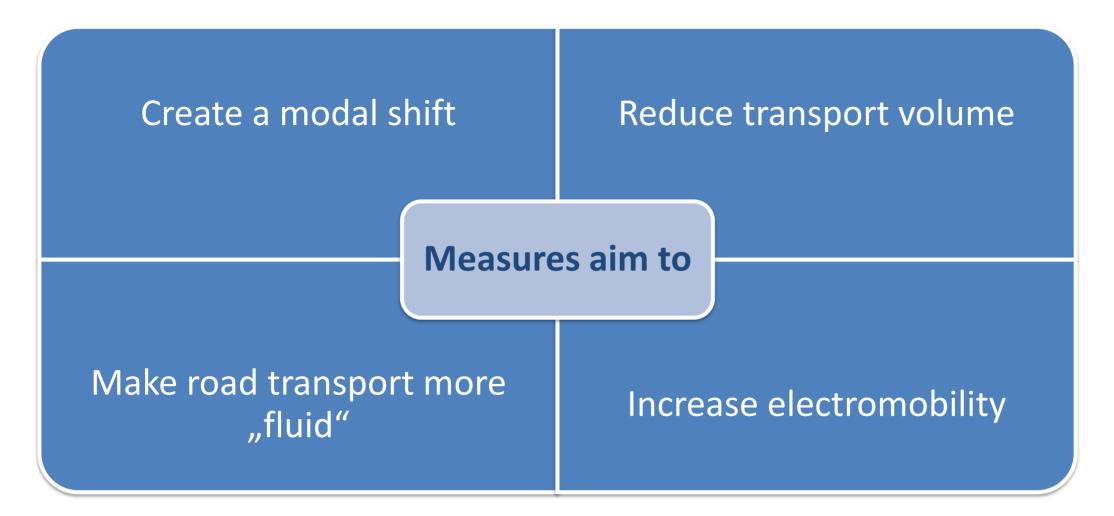

What kind of emissions are we talking about in this webinar?

Why is the topic relevant?

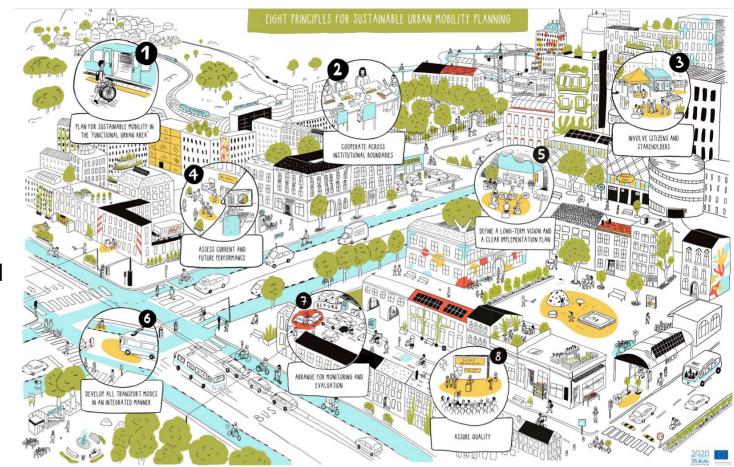

Evolution of CO2 emissions by sector (1990-2016)

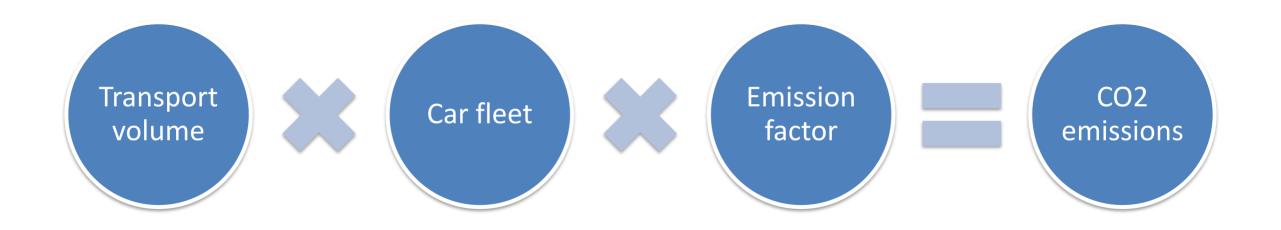
Evolution of CO2 emissions in the EU by sector (1990-2016) Source: European Environment Agency

TRANSPORT CO2 EMISSIONS IN THE EU


Emissions breakdown by transport mode (2016)

Cars account for 60% of transport CO2 emissions Source: European Environment Agency


Emission reduction via transport change processes


Ambitions & context

- Goal of reducing emissions at the national level as well as in the cities
- Assessing different measurements for a sustainable urban transport
- Assessing CO2 emission reduction potential becomes more important

A simple formular?

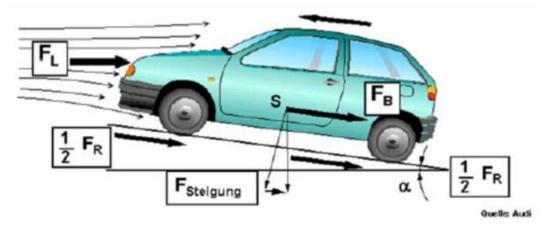
Modelling Vehicular Emissions

SUMBA+ Workshop, 20th of September 2021 Institute of Transport Research, German Aerospace Center Daniel Krajzewicz

Knowledge for Tomorrow

Vehicular Emissions Important Gasses

- Vehicles running on fossil fuels emit different pollutants
- One should distinguish between the pollutants' effects
 - climate gasses (Greenhouse gas emissions, GHG)
 - mainly CO₂
 - gasses and particles dangerous for health
 - CO: poisonous
 - PM_x: responsible for cancer diseases (though as well generated by tire wear)
 - gasses that yield to an increase of health-issuing gasses
 - NO_x: responsible for ground-level ozone increase and smog generation
 - HC: responsible for ground-level ozone increase and smog generation
- One could as well be interested in fuel consumption mainly for economical reasons
- A proper emissions model should be capable to compute the amount of these gasses' emission for a given area and traffic



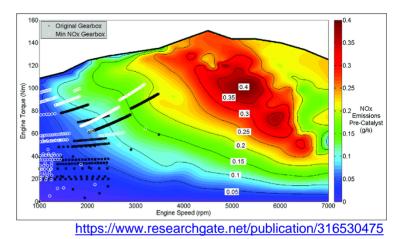
Vehicular Emissions Physics

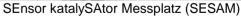
- A vehicle needs to afford power to move
- The power needed is determined by several factors

$$P_e = (P_{rolling \ resistance} + P_{air \ resistance} + P_{acceleration} + P_{road \ gradient}) / \eta_{gearbox}$$

$$\begin{split} P_{R} &= (m_{Vehicle} + m_{Load}) \times g \times (\mathrm{Fr}_{0} + \mathrm{Fr}_{1} \times \mathrm{v} + \mathrm{Fr}_{4} \times \mathrm{v}^{4}) \times \mathrm{v} \\ P_{Air} &= (Cd \times A \times \frac{\rho}{2}) \times \mathrm{v}^{3} \\ P_{a} &= (m_{Vehicle} + m_{Rot} + m_{Load}) \times \mathrm{a} \times \mathrm{v} \\ P_{grad} &= (m_{Vehicle} + m_{Load}) \times Gradient \times 0.01 \times \mathrm{v} \\ \eta_{gearbox} &= 0.95 \text{ (average efficiency)} \end{split}$$

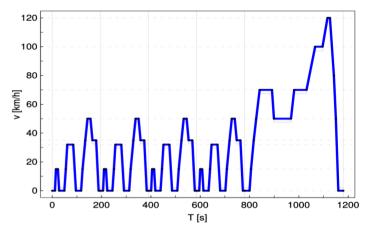
• The power to afford determines the engine load and subsequently the emissions




Vehicular Emissions

Additional Factors

- Besides this plain physics, some other factors influence emissions
 - Engine and drivetrain characteristics
 - vaporization a low amount of gasoline evaporates
 - attributes of the atmosphere temperature and air pressure
 - "cold start emissions" the engine consumes more if it's not yet at the right temperature
 - The chosen gear, of course
- Increasingly important: the catalytic converter
- Different factors determine its performance:
 - its temperature
 - the time line of engine load



Vehicular Emissions How To Measure

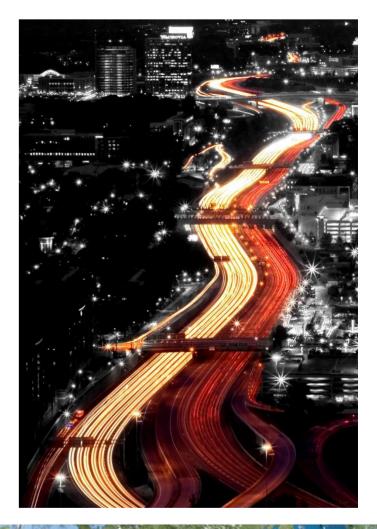
- As seen, the emissions of a vehicle depend on different parameters of the vehicle (motor size, weight, air drag coefficient, even the vehicle's age and the current condition of the engine and the drivetrain)
- Thereby, they cannot be "assumed" or "guessed"
- They have to be measured –for each vehicle type individually
- Done either
 - in laboratories or
 - using PEMS "portable emissions monitoring systems" attached to the vehicles
- To get comparable results, standardized "driving cycles" are used
 - describe speed / acceleration over time

Vehicular Emission Models

Problem Statement#1: Fleet Heterogeneity

- In the real world, a large number of different vehicle and engine types exists
 - passenger cars vs. vans or delivery vehicles vs. busses vs. heavy duty vehicles etc.
 - gasoline, Diesel, CNG, BEV, PHEV, maybe Hydrogen or synthetic fuels in the future
 - different emission norms (EURO1 EURO6) including different catalytic converters

An emission model has to replicate the vehicle fleet found on the roads (which is different for different countries)



Vehicular Emission Models

Problem Statement#2: Driving states

- In the real world, we find different traffic situations, all emerging from the dynamics of single vehicles
 - jam vs. free flow
 - urban vs. rural roads vs. highways
 - interaction with traffic lights

An emission model has to take into account the dynamics of vehicles within the regarded network

inventory models

- "Emission factors" are given for a certain mix of vehicles and certain traffic states
- number of vehicle kilometers travelled (VKT) and the respective traffic state
- Vehicles fleets may be given resembling certain countries or may be defined by the user

microscopic look-up models

 Use the acceleration and deceleration from a microscopic simulation as well as the vehicle type

instantaneous

- The combustion itself is simulated
- Usually sub-modules cover different aspects as the current gear or the catalyst converter

Level of detail

inventory models

- "Emission factors" are given for a certain mix of vehicles and certain traffic states
- number of vehicle kilometers travelled (VKT) and the respective traffic state
- Vehicles fleets may be given resembling certain countries or may be defined by the user

microscopic look-up models

 Use the acceleration and deceleration from a microscopic simulation as well as the vehicle type

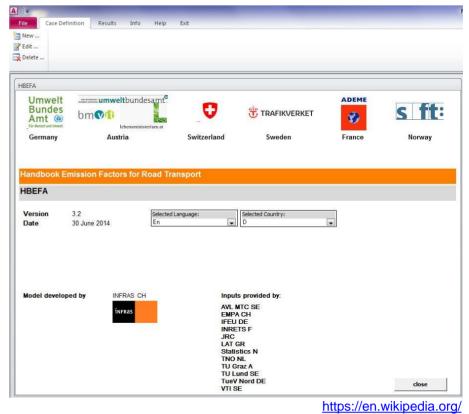
instantaneous

- The combustion itself is simulated
- Usually sub-modules cover different aspects as the current gear or the catalyst converter

Inventory Models#1

COPERT - COmputer Programme to calculate Emissions from Road Transport

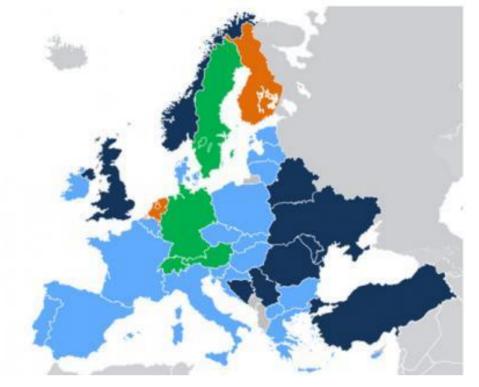
- Financed by the European Environment Agency (EEA)
- Part of the EMEP/CORINAIR Emission Inventory Guidebook
- Windows application, current version: COPERT 5 version 4.36
- Freeware, available at https://www.emisia.com/utilities/copert/
- Uses vehicle population, mileage, speed and other data such as ambient temperature
- Covers thermal stabilized engine operation ('hot' emissions), 'cold start' emissions, and non-exhaust emissions
- 24 passenger vehicle classes (6 different propulsion systems, four size classes each), 6 classes of light commercial vehicles, 30 heavy duty vehicle classes, 8 light vehicle classes



https://www.emisia.com/utilities/copert-street-level

Inventory Models#2 HBEFA – Handbook of Emission Factors

- Financed by different European country agencies (Germany, Austria, Switzerland, Norway, France, ...)
- Windows application, current version: HBEFA 4.1 with updates
- 250,- per license, available at https://hbefa.net/
- Uses fleet composition, traffic state,
- Covers thermal stabilized engine operation ('hot' emissions), 'cold start' emissions, and non-exhaust emissions
- Different vehicle classes (passenger, LDV, busses, HDV, motorcycles), different EURO emission norms
- Predefined vehicle fleets for different countries



Inventory Models#3 HBEFA – Handbook of Emission Factors

- COPERT and HBEFA are quite similar in features
- Difficult to decide on one
- The map of usage per country could help
- "COPERT-based" usually employs countryspecific vehicle fleets

COPERT HBEFA Own model COPERT-based

Vehicle emission models usage in Europe

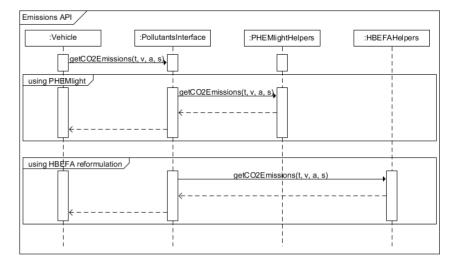
inventory models

- "Emission factors" are given for a certain mix of vehicles and certain traffic states
- number of vehicle kilometers travelled (VKT) and the respective traffic state
- Vehicles fleets may be given resembling certain countries or may be defined by the user

microscopic look-up models

 Use the acceleration and deceleration from a microscopic simulation as well as the vehicle type

instantaneous

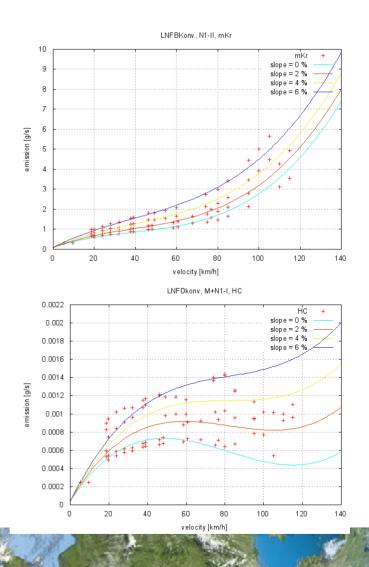

- The combustion itself is simulated
- Usually sub-modules cover different aspects as the current gear or the catalyst converter

Derived Microscopic Emission Models#1 Features

- Usually directly implemented in microscopic simulations (PTV Vissim, SUMO)
- Most common method (for each vehicle)
 - get the speed and the acceleration computed in the last simulation step
 - use speed / acceleration and the vehicle's emission class to look up for the emissions

 \rightarrow very fast

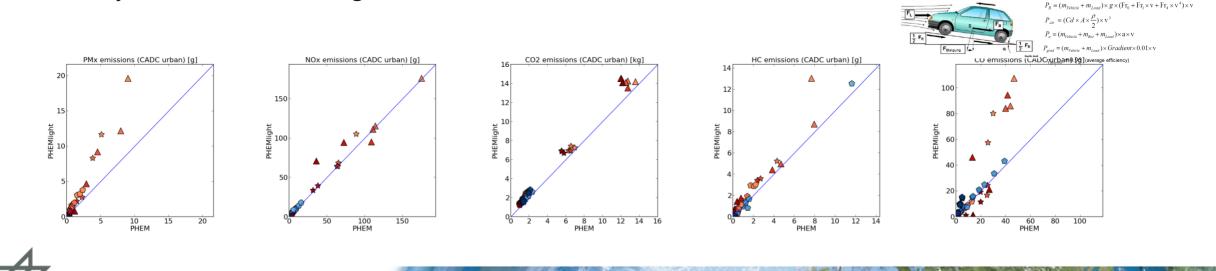
- \rightarrow Many possibilities to generate outputs
 - per vehicle (amount per trip)
 - per road or segment (emissions for each road)



Derived Microscopic Emission Models#2 HBEFA-Derivation

- Using HBEFA version 3.1
- Free and included in SUMO

Some drawbacks


- Only some major classes were selected
- The dependency on acceleration had to be determined from the dependency on the slope of the road, given in HBEFA
- Not all pollutants' curves can be fit well to the used function

Derived Microscopic Emission Models#3 PHEMlight

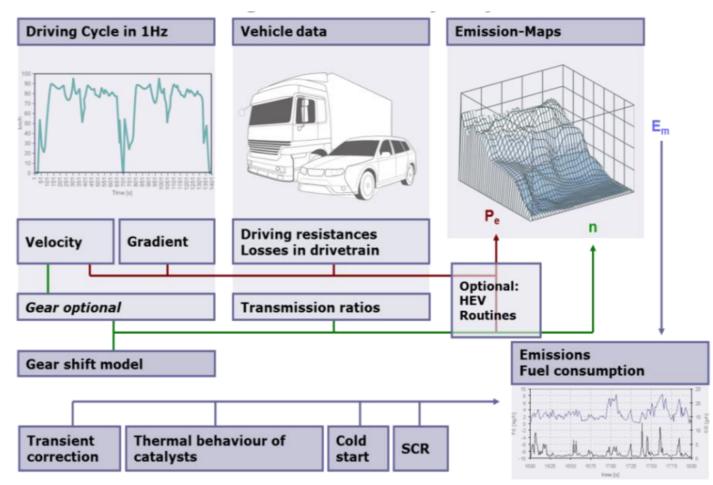
- PHEMlight: a model derived from PHEM for the microscopic simulation SUMO
- Uses a vehicle's current velocity and acceleration to compute the needed power, first
- Uses this power value to look up the current emissions in so-called "CEP"-files (Characteristic Emission curves over Power)
- Contains 112 vehicle classed (different passenger vehicles, busses, vans, and heavy duty vehicles)
- Some pollutants are resembled well, some due to disregarding the driving history (gear, state of the catalytic converter) – less good

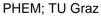
inventory models

- "Emission factors" are given for a certain mix of vehicles and certain traffic states
- number of vehicle kilometers travelled (VKT) and the respective traffic state
- Vehicles fleets may be given resembling certain countries or may be defined by the user

microscopic look-up models

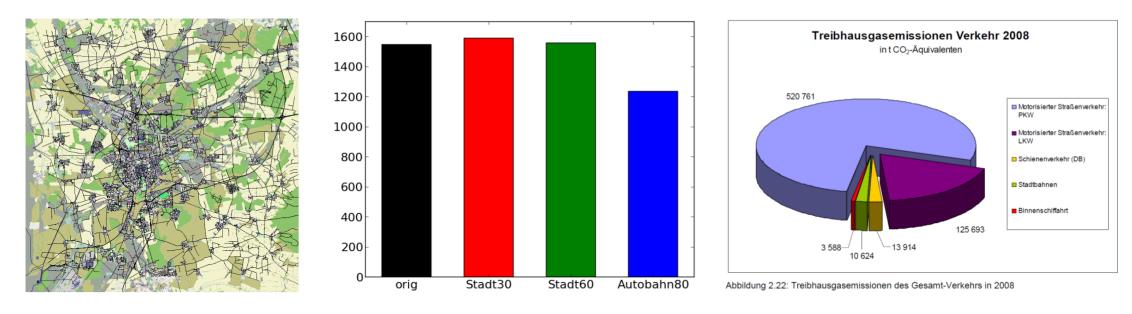
• Use the acceleration and deceleration from a microscopic simulation as well as the vehicle type


instantaneous


- The combustion itself is simulated
- Usually sub-modules cover different aspects as the current gear or the catalyst converter

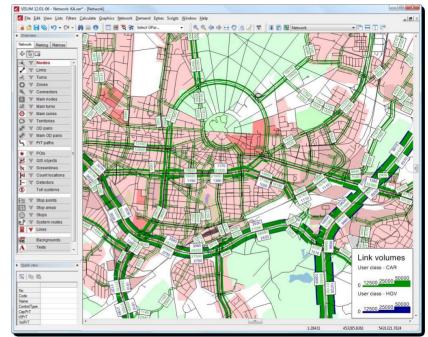
Instantaneous Emission Models PHEM

- Product of TU Graz
- An instantaneous emission model
- Consists of several sub-models
- Calibrated to real-world measures
- Feeds HBEFA and COPERT
- Commercial license



Evaluating Emission Models

- Difficult! Compare against what?
- First check: emission values for Brunswick (old HBEFA)

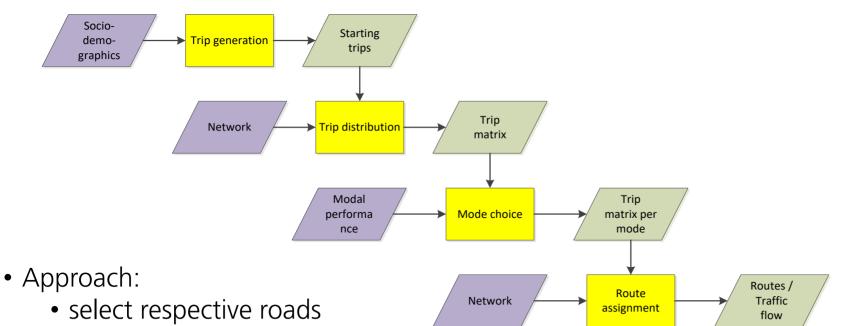

- 521kt+126kt = 647kt p.a.; 647kt p.a./365 days ~= 1772 t
- 10 % error? Great, but: Same area? Same population? Who knows?

Applications for Models of Vehicular Emissions#1 Benchmarking Traffic Management Measures

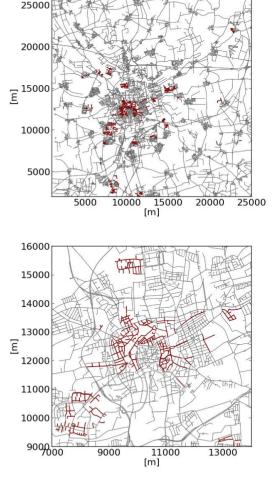
- Traffic management measures are usually evaluated on the level of complete cities as they as well influence transit traffic
- Thereby, usually using macroscopic simulations

• Process

- Build the base model, run it, compute emissions
- Implement changes in the model, run it, compute emissions
- Compute emissions
- Of course, one could think about an automatic optimization of the measure (but that's done very seldom)

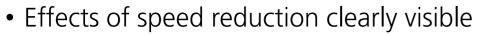


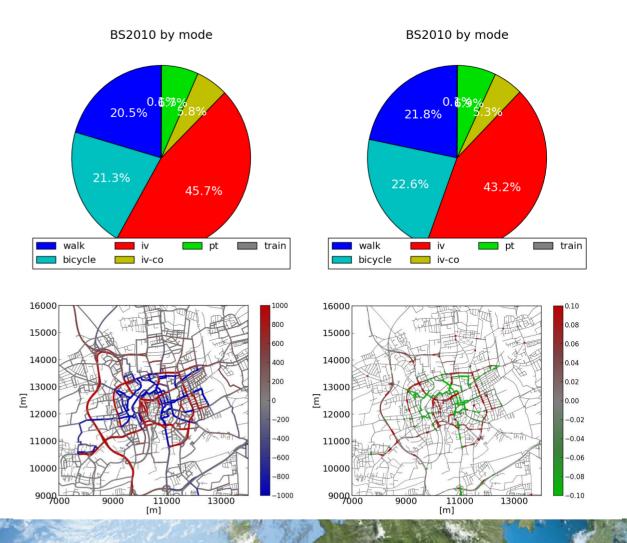
VISUM screenshot; PTV AG



Applications for Models of Vehicular Emissions#2 Benchmarking Traffic Management Measures – 30 km/h speed limit

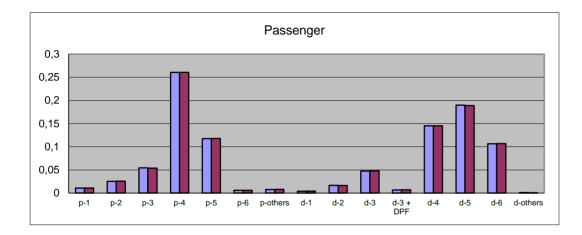
• Question: What happens if we change the allowed speed to 30km/h in side roads?

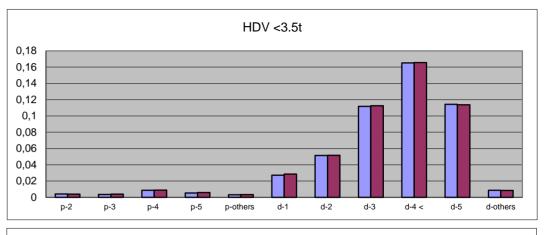

- change the allowed speed
- simulate (including assignment)

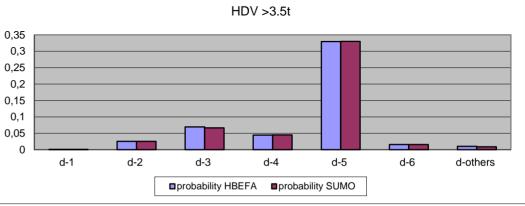


Applications for Models of Vehicular Emissions#3 Benchmarking Traffic Management Measures – 30 km/h speed limit

• Yes, the measure affects the mode choice

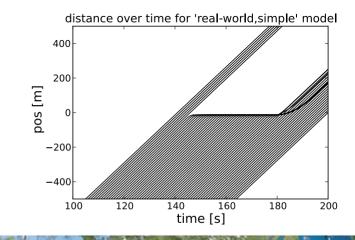

- Left: less traffic on side roads
- Right: less emissions on side roads





Applications for Models of Vehicular Emissions#4 The price of using microscopic models

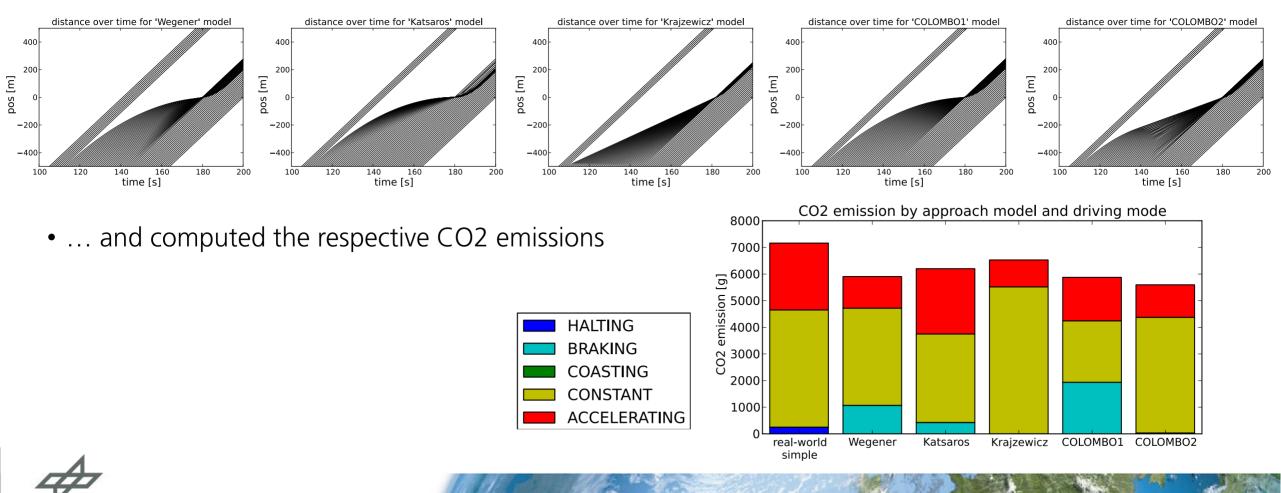
• You need to resemble the vehicle fleet



Applications for Models of Vehicular Emissions Excurse: GLOSA – Green Light Optimal Speed Advisory

- GLOSA ("Green Light Optimal Speed Advisory") is a driver assistance system.
- It gets information from the traffic lights ahead about the current and the next states via a wireless communication channel.
- It computes the speed to pass the traffic light and presents it to the driver.

- Very simple "real world" model:
 - Drive towards the intersection while the traffic light shows green
 - Brake if red, or if yellow and far enough to halt
 - Re-accelerate at green



Applications for Models of Vehicular Emissions Excurse: GLOSA – Green Light Optimal Speed Advisory

• We've tested different algorithms for speed advisory in GLOSA

Vehicular Emission Models A Comparison of Applications – Data Needs

inventory models

- The amount of driven vehicle kilometres (VKT) (can be retrieved from a simulation)
- The vehicle fleet (probably sufficient to obtain on a national scale)
- → Hardly applicable for areas, even for single intersections

microscopic look-up models

- The simulation scenario
 - Road network
 - Vehicle routes
- Vehicle population needs to duplicate the real-world population

instantaneous

 Trajectories of single vehicle movement (speed timeline)

- → Rather not to advice for bigger areas, mainly due to the big effort needed to prepare the road network
- → Hardly applicable for areas, even for single intersections

Beyond Emission Models

Dispersion and Immissions

- Computing vehicular emissions is only the first step
- Gasses and particles disperse and move afterwards and perform chemical reactions
 - depending on wind
 - depending on atmosphere conditions
 - depending on the built environment
- Additionally, "background" emissions from buildings, factories, etc. contribute to an areas pollution
- This makes comparing simulated and measured pollution complicated
- Models for dispersion and resulting immission (impact) are available as well, but not in common use
- Yet, it seems to be sufficient to determine the reduction of emissions

Summary

- Meanwhile, almost every simulation package has an own emissions module
- Inventory models are the most useful way to obtain emission values for a city
 - COPERT
 - HBEFA
- They require the amount of driven kilometers in the area, the vehicle fleet and the average speed or traffic states
- Easy to use, but deliver only one value per area and pollutant (the amount of generated pollution)
- A per-street representation can be obtained using built-in emission models or additional tools only

Get in touch!

Kay Gade Kay.Gade@DLR.de

DLR Institute of Transport Research Department Mobility and Urban Development Project Manager

Daniel Krajzewicz Daniel.Krajzewicz@DLR.de

DLR Institute of Transport Research Department Mobility and Urban Development Head of department (comm.)

Knowledge for Tomorrow